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ABSTRACT whose two most important attributes are finger diameter
and the fraction of the total cross-sectional area occu-A conceptual model is presented that represents the development
pied by fingers (hereafter called the finger flow fraction).of unstable flow in uniform soils during redistribution. The flow insta-
Various attempts have been made to predict the fingerbility results in the propagation of fingers that drain water from the
diameter from soil properties and the water flow charac-wetted soil matrix until equilibrium is reached. The model uses soil

retention and hydraulic functions, plus relationships describing finger teristics. They either involve an approximate equation
size and spatial frequency. The model assumes that all soils are unsta- that is a function of the sorptivity (Parlange and Hill,
ble during redistribution, but shows that only coarse-textured soils will 1976) or include a macroscopic surface tension associ-
form fingers capable of moving appreciable distances. Once it forms, a ated with the large-scale curvature induced by the radius
finger moves downward at a rate governed by the rate of loss of water of the finger (Chuoke et al., 1959; Glass et al., 1989a).
from the soil matrix, which can be predicted from the hydraulic con- Hydrostatic balance equations written at the wetting-
ductivity function. Fingers are assumed to stay narrow as a result of front interface have periodic solutions that have a maxi-
hysteresis, which prevents lateral diffusion. The draining front in the

mum unstable wavelength, and this is used to calculatesoil matrix between the fingers is assumed to cease downward move-
the finger diameter. Both approaches involve associatingment because water pressure drops below the threshold water-entry
one-half of the wavelength with the finger diameter.matric potential. The threshold potential is not present in the conven-
Parlange and Hill (1976) and Glass et al. (1989a) relatedtional Richards equation of soil water flow, which explains why unsta-
the finger diameter to the soil’s sorptivity S and theble flow is not predicted by widely used simulation model codes.
system flux ratio Rs by

d �
2.4S2

Ks (�s � �i)
� 1
1 � Rs

� [1]Ustable flow during infiltration in unsaturated
porous media has been studied for many years and

is known to be associated with a number of existing con- where Rs � i/Ks is the ratio of the infiltration or drainage
ditions, including vertical flow from a fine-textured layer rate to the saturated hydraulic conductivity. The expres-
into a coarse one (Hill and Parlange, 1972; Baker and sion of Chuoke et al. (1959) was adapted by Glass et
Hillel, 1990), vertical flow into a compressed air phase al. (1989a) to produce a finger diameter of
(Peck, 1965), infiltration into water-repellent soil (Hen-
drickx et al., 1993), and two-phase flow involving two d � a� �*

�w g(1 � Rs)
[2]

fluids of contrasting density and viscosity (Chuoke et
al., 1959). More recently, it has been demonstrated to

where a � 3.14 (two-dimensional) or 4.8 (three-dimen-occur during infiltration into homogeneous soil at flux
sional) is a geometric constant and �* is the effectiverates substantially less than the saturated hydraulic con-
macroscopic surface tension at the interface betweenductivity (Selker et al., 1992b; Geiger and Durnford,
the finger and the soil ahead of the advancing front.2000), and during redistribution following infiltration in

Wang et al. (1998) replaced the effective surface ten-homogeneous soil (Diment and Watson, 1985; Wang et
sion with an expression involving the water-entry pres-al., 2003a). Unstable flow is distinct from other forms
sure head hwe of the wetting curve by using the capillarityof so-called preferential flow in that it is a fluid phenom-
equation �P � 2�/R and defining an effective macro-enon whose extreme flow location is not a consequence
scopic curvature R* at the interface. This modificationof permeability variations in the porous medium.
produces the expressionUnstable flow in porous media was first analyzed by

Saffman and Taylor (1958), who showed that perturba-
tions in a wetting front between two immiscible liquids d � a√R*|hwe| � 1

1 � Rs
�
1/2

[3]
will develop into instabilities whenever the velocity of
the invading fluid exceeds a threshold value. Raats where R* is the effective mean radius of curvature of(1973) and Philip (1975) demonstrated that the condi- the air–water interface at the wetting front. In fluidtion for instability at a wetting front in a porous medium mechanics, R* is assumed to be equivalent to the hy-was that the total hydraulic gradient behind the front draulic radius of flow, which is defined as the ratio ofis less than unity (i.e., the water pressure decreases to- the cross-sectional area of flow to the wetted perimeterward the surface). Any effort to describe the fingering

(Bird et al., 1960), or the ratio of fluid volume in theprocess must begin by characterizing finger geometry,
pores to the contact area with the solid (Bear, 1972).
For example, the hydraulic radius of a film flow, with
film thickness h and width w, is equal to wh/w � h. TheWilliam A. Jury and Atac Tuli, Department of Environmental Sci-
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moves downward. At the same time, a narrow zone of
wetting is created at the outside fringe of the finger
adjacent to the inner core. The interior of the finger
thus follows the drainage loop of the water characteristic
curve, whereas the fringe is on the wetting curve. Since
at the same water content the drying curve is at a lower
matric potential than the wetting curve, equilibrium is
reached at different water contents inside the core and
at the fringe, and the fingers remain narrow.

Instabilities form at a wetting or draining front when
a portion of the front moves ahead of the rest and is
fed by lateral flow from the surrounding soil matrix.
An important factor in maintaining fingered flow, for
reasons that will be discussed below, is the water-entry
pressure head hwe, which is defined as the minimum
matric potential head at the wetting front interface re-
quired to allow fluid to enter the dry portion of the
medium below the wetting front. It has been measured
experimentally in layered media by Baker and Hillel
(1990) and in homogeneous media by Geiger and Durn-
ford (2000) and Wang et al. (2000). Baker and Hillel
(1990) also showed that it corresponds approximately
to the matric potential at the inflection point of the
wetting loop of the moisture release curve.

Although most of the effort to characterize fingeredFig. 1. Fingering occurring in homogeneous soil during redistribution
flow has been experimental, recent attempts have beenin the Hele–Shaw experiments of Wang et al. (2003a). Region
made to model the transport process during fingeredillustrated is a subset of the 1 by 1 m area of the chamber.
flow instability. Nieber (1996; Nieber et al., 2000) used
a hysteretic form of the Richards equation together withfinger width experimental observations and models is
a heavily biased numerical weighting scheme used togiven in de Rooij (2000).
calculate hydraulic conductivity at the wetting front thatThe finger diameter is determined by two factors, the
essentially mimicked the water-entry matric potentialflow rate and the soil properties Ks and hwe. The fraction
by preventing water from moving into the dry region� of the total area at the front that the fingers occupy
unless the wet zone was highly conducting. With thisis more difficult to estimate because it depends on the
condition imposed, the Richards equation was able torate of supply of water from the matrix to the finger,
predict the propagation of fingers. A different approachas well as on the flux through the finger. Glass et al.
to modeling unstable flow was taken by Glass and Yar-(1989b) analyzed Hele–Shaw cell data and came up with
rington (1996), who used an invasion percolation algo-the empirical relation
rithm that neglected viscous forces to create a complex

� � 0.08 	 0.90√Rs; r2 � 0.955 [4] pattern of gravity-induced fingers. The process is driven
by pore filling in a medium composed of connectedIn contrast, Hillel and Baker (1988) calculated � at the
networks of pores.interface between fine- and coarse-textured soil from a

The purpose of this paper is to use the known orphysical argument, assuming that all of the flux in the
postulated behavior of fingers during unstable flow tomatrix is diverted to fingers after unstable flow begins,
build a conceptual model of the fingering process duringand that the flux through the finger is equal to K(hwe).
soil water redistribution. The emphasis of this approachWith these assumptions, it is easy to show that
is not simulation, but rather illustration of the main
characteristics of fingering and its dependence on soil

� �
i

K(hwe)
�

Rs

Kr(hwe)
; Kr(hwe) �

K(hwe)
Ks

[5] and management properties.

Note that Eq. [4] and [5] predict very different behavior
THEORYof � as a function of Rs. In particular, the Hillel expres-

sion Eq. [5] is likely to underestimate the finger area Finger Shape and Propagation
fraction during redistribution when the matric potential

Figure 1 shows a cross section of a portion of the drainingopposes the flow.
front from a redistribution experiment conducted in a 1.0 mObservations of the fingering process have repeatedly
wide by 1.0 m deep by 0.1 m thick Hele–Shaw cell describedshown that fingers remain narrow as they propagate
in detail in Wang et al. (2003a). In this study, 5 cm of waterand persist for a long time after flow stops. Glass et al. was ponded on the surface of the cell containing a uniform

(1989c) offered a physical explanation involving hyster- dry coarse sand, and redistribution began at about t � 1 min.
esis in the matric-potential water content function (the Several characteristics are evident in the figure. First, although
water characteristic) for why the fingers don’t disperse perturbations in the shape of the front are present from the
by lateral diffusion. The interior of the finger first wets outset, instabilities do not form and cause fingers to grow until

after redistribution begins. Second, once the fingering processto near saturation and then drains as the tip of the finger
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Fig. 2. Development of a fluid instability during redistribution, when
the pressure distribution decreases toward the surface. When the
front advances ahead at one location, the pressure distribution
above it shifts downward, creating a lateral flow gradient from
adjacent regions. Darker red color indicates wetter soil at higher
matric potential.

starts, downward flow essentially stops in the matrix region
between the fingers. Third, the initial finger area fraction � is
substantial (�50% in this experiment), but the fingers become
thinner as the flow rate decreases.

Fig. 3. Profile characteristics at the beginning (top) and end (bottom)
of preferential flow. Darker red color indicates wetter soil at higherPhysical Explanation of Instability
matric potential.during Redistribution

Several conditions must be present for instabilities to form one point along the front, which shifts the water pressure
and propagate at a wetting or draining front in a homogeneous distribution downward above that location. As a result, regions
porous medium. First, a mechanism must be present to prevent of the surrounding matrix begin to supply the zone above the
water inside a propagating finger from easily entering the dry finger, because the horizontal pressure distribution induces
soil adjacent to it. As discussed in the introduction, Glass et al. lateral flow. Subsequently, the water pressure in the sur-
(1989c) provided a plausible argument that hysteresis allows rounding matrix decreases, and the pressure at the wetting
fingers to penetrate into the dry media without dispersing front drops below the water-entry pressure hwe, thereby stop-
rapidly (Glass and Nicholl, 1996). Second, once a finger forms ping downward flow in the matrix region. The profile drainage
at the interface, it must be supplied by lateral flow of water then proceeds exclusively through propagating fingers and
from the surrounding soil matrix in the wetted zone as well continues until flow stops. The finger may eventually dissipate,
as from the region directly above the finger. In addition, down- but this occurs on a time scale that is much longer than the
ward flow of water and advance of the draining front in the propagation event (Glass et al., 1989c).
matrix zone between fingers must greatly slow down, so that
water remains available for the finger. In order for these effects The Equilibrium Model
to occur, the dry soil region below the wetting front must have

An approximate representation of the depth of penetrationa threshold water-entry matric potential hwe, below which the
of a finger during redistribution may be achieved through anwetting front will not advance. Fine-textured soils, with a
equilibrium analysis and the following assumptions:wide range of pore sizes, do not have a distinct water-entry

potential, but coarse-textured media made up primarily of • Infiltration proceeds at a constant flux rate i until thelarge pores have been shown to possess a characteristic thresh- wetting front reaches a depth D below the surface, atold for water entry (Geiger and Durnford, 2000; Wang et al., which time redistribution begins.2000). Because so much of the void space suddenly fills as • Fingers of diameter d form along the wetting front, andthis threshold is reached, the conductivity of the medium the wetted profile drains through the fingers.changes from negligible to high. • The fingers initially occupy a fraction � of the totalFigure 2 illustrates the formation and propagation of a cross section.finger during redistribution. During normal drainage, water • Drainage continues until the finger and matrix are inpressure at the interface between the wet and dry zones is at hydrostatic equilibrium.the water-entry potential hwe, which allows water to enter the
dry region below the entire draining front. As a perturbation Figure 3 shows the draining profile at the beginning and

end of the finger propagation event. Initially, the wetted soilforms, the depth of penetration becomes slightly greater at
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zone is filled with water from the infiltration process to a depth
D, and has a water-content distribution �(z) that depends on
the soil and flux rate. A finger of diameter d forms and is
supplied with water from the surrounding matrix, here repre-
sented as a zone of width L (or area L 2 in three dimensions),
which defines the spatial frequency of the finger. The finger
moves downward, with its leading edge remaining at the water-
entry pressure hwe, until flow ceases everywhere in the matrix
and finger domain. At this time, the profile has reached hydro-
static equilibrium (dh/dz � �1).

The final depth of penetration W of the finger below the
original wetting front depth D may be obtained by mass bal-
ance. If we assume that the decrease in storage of the matrix
is equal to the increase in storage of the finger, we obtain

Am �
D

0
[�mi(z) � �∞(z)]dz � �

D	W

D
Af(z)[�∞(z) � �si(z)]dz

[6]
Fig. 4. Outflow simulated with the two-dimensional Richards equa-where �mi is the initial water content in the matrix zone, �∞(z)

tion through apertures of different diameter (symbols) and gravityis the final water content in the finger and matrix zones, �si is flow model Eq. [10] (line). Initial condition is profile produced by
the soil water content below the wetting front, and Am and Af constant flux infiltration to a depth of 10 cm.
are the cross-sectional areas of the matrix and finger domains,
respectively (Fig. 2).

produced nearly identical discharge rates from the apertureThe initial water content or pressure distribution between
(Fig. 4), demonstrating that the rate of loss of water from thethe surface and depth D can be determined by traditional
matrix governs the entry of water into the finger domain.modeling with the Richards equation. It may be estimated
Moreover, as shown by the line in the figure, this rate of lossapproximately for the case of constant infiltration at a rate i
is represented quite well by the gravity flow modelby solving the steady flow equation

L
d�a

dt
� �K(�a) � q(t) [10]i � �K(h) �dh

dz
� 1�; h(D) � hwe �mi � �w[h] [7]

where �a is the average water content in the profile. Thewhere �w(h) is the wetting branch of the water characteristic
volume flow rate entering the finger from the matrix is givencurve. The final water content distribution is the profile at-
by Amq(t), and this is equal to the rate of increase of watertained at hydrostatic equilibrium, and therefore is equal to
stored in the finger. Thus, at time t

�m(z) � �d [heq(z)] � �d [hwe � W � D 	 z] [8]
Am �

t

0
q(t)dt � �

x(t)

0
Af�f(z,t)dz [11]where z � 0 at the surface and is positive downward, heq(z)

is the matric potential profile at equilibrium, and �d[h] is the
where x(t) is the depth of finger penetration below the wettingdrying curve of the water characteristic function.
front at time t. The water content distribution �f(z,t) in theThe finger area fraction � is equal to Af(D)/Am, the portion
finger is determined by the supply rate q(t) and the constraintof the matrix cross section at the draining front that is occupied
that �f � �we at the tip. As a rough approximation, we mayby fingers. We will use the representation in Eq. [4] from
assume that the water profile within the finger continuouslyGlass et al. (1989b) in our model calculations. During redistri-
adjusts to steady state, so thatbution, the finger diameter shrinks because the flow rate is

decreasing, eventually reaching zero. According to the finger
diameter representation in Eq. [3], this means that the ratio q(t) � �K(h)�dh

dz
� 1�; h[x(t)] � hwe [12]

of the final finger area to the initial finger area is 1 � Rs.
Assuming that the area declines linearly with depth (i.e., the In addition, the finger flow area at the tip of the finger willfinger is conical), we may model the area Af(z) in Eq. [6] by

decline with time, and at any time t will be equal to (assumingthe expression
Af � d2 and using Eq. [3])

Af(z)
Am

� ��1 � Rs
(z � D)

W �; D 
 z 
 D 	 W [9] Af(t)
Am

�
Af(0)
Am

Af(t)
Af(0)

� �
(1 � Rs)

[1 � q(t)/Ks]
[13]

With these assumptions, the final finger position may be calcu-
Equations [11] through [13] are solved iteratively at each timelated with Eq. [6] through [9] from the soil hydraulic proper-
t for x(t). The final position of x will correspond to the equilib-ties, infiltration rate, and depth of wetting.
rium position W calculated by Eq. [6] provided that drainage
proceeds to equilibrium in a reasonable period of time.Dynamics of Finger Propagation

It is not clear a priori whether the rate of flow of water Water-Entry Matric Potential hweinto the finger is limited by the rate of supply from the matrix
Following Baker and Hillel (1990), we may estimate theor from the resistance within the finger domain. We tested

water-entry matric potential hwe by determining the inflectionthe sensitivity of the rate of loss of water from the matrix to
point of the moisture release curve. Using the van Genuchtenthe finger geometry indirectly with the model HYDRUS-2D
(1980) parameterization(Simunek et al., 1996), by using the profile from one-dimen-

sional infiltration to depth L as the initial condition in a simula-
tion where water was only allowed to drain through an aper- � �

� � �r

�s � �r

� [1 	 (�|h|)N]�M; M � 1 �
1
N

[14]
ture of width d. Simulations with different barrier widths
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Fig. 6. Finger shapes formed in sandy soil during redistribution fol-
lowing infiltration at different flux ratios Rs � i/Ks.

K(h) �
Ks

[1 	 (�|h|)]

[16]

Equation [16] was used in preference to the van Genuch-
ten (1980) K(�) function derived from the moisture re-Fig. 5. Equilibrium finger depth reached during redistribution as a
lease curve because the van Genuchten relation doesfunction of infiltration rate. Curves were calculated with Eq. [6]

through [9]. not allow equilibrium to be reached in a physically rea-
sonable time for coarse-textured soils, unless the me-
dium is extremely wet. The values of � and � werewe obtain the values
adjusted so that K(hwe) � 0.125Ks and K(�100) � 0.1
mm d�1, which were deemed physically reasonable set-hwe � �

M 1�M

�
; �we � � 1

1 	 M�M
[15]

points for purposes of illustration. With these criteria,
the dynamic finger growth model approaches the equi-
librium value calculated by Eq. [5] within a few days.

RESULTS
DISCUSSIONFigure 5 shows the predicted equilibrium depth as a

function of Rs for fingers produced during redistribution Criteria for Instability and Finger Propagation
following infiltration to a depth of 10 cm. Matric poten-

The notion that homogeneous soils may be unstabletial–water content curves taken from HYDRUS-2D (Si-
during redistribution is not widely accepted in main-munek et al., 1996) for four soils representing charac-
stream soil physics, although it has been reported interistic textures are used in the simulations (Table 1).
the literature (Diment and Watson, 1985; Wang et al.,Several features are prominent. First, although by as-
2003a). It has long been believed that capillary flow hassumption all soils are unstable during redistribution,
a stabilizing influence on water movement, and that anythe finger depth is negligible in the finer-textured soils.
perturbations in the advance of the wetting front thatSecond, maximum finger depths are large both at low
developed would be quickly damped out by lateral flow.infiltration rates and high ones, reaching a minimum at
In addition, prevailing theory would suggest that otherintermediate values of Rs. The reason for this behavior
parts of the draining front behind any finger in the proc-is made clear in Fig. 6, which shows a cross section of
ess of formation would continue to advance, therebythe final finger position for the sand at various flow
depriving the finger of the water it would need to out-rates. At large Rs, most of the cross-sectional area is taken
pace the rest of the profile. Clearly that is not the caseup by the finger (see Eq. [4]), but there is a large amount
in Fig. 1, where the advancing fingers actually becomeof water stored in the 10 cm matrix profile because the
narrower during their downward journey, and the ma-infiltration rate nearly saturated the soil. In contrast,
trix flow between the fingers virtually ceases. However,there is much less water stored during infiltration at the

lowest Rs, but the finger occupies only a small part of the
cross section and therefore receives a lot of water from
the surrounding matrix and penetrates to great depth.

Figure 7 shows the dynamics of finger growth in the
sandy soil for the case of Rs � 0.25, calculated using
Eq. [11] through [13]. The flux q(t) from the matrix into
the finger was calculated with Eq. [10] using the K(h)
function

Table 1. Parameters of Eq. [14] through [15] for soils used in
the simulations.

Texture �S �R � N KS � � hwe

Sand 0.43 0.045 0.145 2.68 29.7 0.315 3.24 �5.7
Sandy loam 0.41 0.057 0.124 2.28 14.6 0.300 3.07 �6.3 Fig. 7. Finger depth reached as a function of time for the sandy soil
Loamy sand 0.41 0.065 0.075 1.89 4.42 0.212 3.03 �9.0 following an infiltration at Rs � 0.25, calculated with Eq. [10]
Loam 0.43 0.078 0.036 1.56 1.04 0.132 3.03 �14.4 through [13]. Equilibrium position is shown as a dashed line.
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textured soil. As a result, the redistribution process will
reach completion without much downward movement
and the forward advance of fingers will be negligible.
A key factor in a soil’s susceptibility to deep penetration
by fingers is the shape of the drying curve of the water
content–matric potential function (Fig. 8). The equilib-
rium (h 	 z � const.) water content profile in the finger
when movement stops is equal to the portion of the
curve beginning at the tip of the finger where � � �we

and extending upward. Since coarser-textured soils have
little water remaining in them at relatively high matric
potentials, most of the finger contains little water. The
water content profiles for the finger shown in Fig. 5
have the same characteristic shapes measured in Selker
et al. (1992a), with water content decreasing toward
the surface.

Fig. 8. Matric potential–water content curves calculated for the four Influence of Initial Water Content
soils, using the model Eq. [15] and the parameters in Table 1.

The arguments to this point have focused on redistri-
bution following infiltration into a dry medium. If theif we accept the hysteresis explanation for fingers re-
soil ahead of the wetting front contains water, the finger-maining narrow (Glass et al., 1989c) and assume that
ing process will be affected in several ways. The water-the water pressure in the matrix drops below the water-
entry pressure will decrease, which will cause the fingersentry pressure hwe, then fingers will form and propagate
to become larger at a given flow rate. And, the capillarywhenever the matric potential gradient opposes the
diffusion time scale will decrease because the fluid phaseflow. The water-entry pressure has been demonstrated
will have more continuity, with the consequence thatto exist in soil in several experiments (Baker and Hillel,
fingering will dissipate more easily and the matrix flow1990; Geiger and Durnford, 2000; Wang et al., 2000)
between the fingers will be less likely to stop completely.showing that water will not enter a dry medium until
As a result, the extent of fingering during redistributionthe liquid pressure at the point of entry is raised above a
will be less at a given infiltration rate as the water con-critical level, at which point infiltration suddenly begins.
tent ahead of the wetting front increases. These conceptsHowever, the continuum description of water flow
are consistent with observations we made in a recent setdescribed by the Richards equation has no water-entry
of experiments in a Hele–Shaw cell (Wang et al., 2003a).matric potential, because water will always flow from

higher matric potential to lower, no matter what is the
potential of the wetter region. To see that this is so, we Finger Characteristics
need only examine Philip’s solution to the equation The two most important features of fingering are the
for infiltration (Philip, 1969), where he shows that the finger diameter d and the finger area fraction � or spatial
sorptivity is a function of the difference in water content frequency. Finger diameter has been predicted reason-
between the wet and dry regions, and that water will ably well with the equations given here, and with similar
infiltrate into a completely dry medium at any wet re- formulations discussed in the review by de Rooij (2000).
gion potential. Thus, in order for the Richards equation In particular, Eq. [3] requires only the water-entry ma-
to model finger propagation correctly, it must include tric potential and the infiltration rate, and has estimated
hysteresis to prevent finger widening and somehow in- finger diameter satisfactorily both in the laboratory (Wang
sert a water-entry potential to prevent continued down- et al., 1998, 2003a) and in the field (Wang et al., 2003b).
ward flow in the matrix. The only attempt to include In this paper, we have assumed that finger diameter
the latter effect has been by Nieber (1996; Nieber et shrinks according to Eq. [3] during redistribution, pro-
al., 2000), who calculated the conductivity at the wetting ducing a conical shape that is roughly similar to what we
front by a weighting procedure dominated by the low have observed in our experiments. Thus, we feel that
conductivity in the dry zone below the front. Whether this characteristic is predictable.
this procedure provides an adequate substitution for We are less sanguine about the predictability of the
using the threshold matric potential directly is a question finger area fraction �. As we stated in the introduction,
that must await further study. various authors have used quite different models for �,

and the form we used (Eq. [4]) for our calculations isSoils and Instability an empirical relation derived from laboratory data
(Glass et al., 1989b). As shown in Fig. 1, the area fractionOur simulations are based on assumptions that pre-

dict that all soils will be unstable during infiltration. declines with time as the fingers shrink during redistri-
bution, and it is difficult to resolve the exact fractionHowever, as indicated by Fig. 5, finger propagation is

only important in coarser-textured soils, because fingers occupied by fingers at the outset. Additional experimen-
tation under different conditions will be required toin finer media are wider, contain more water, and oc-

cupy more of the total cross section than in coarse- produce more accurate models of this key parameter.
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